

Systematic Comparative Study of Circuit Switching, Packet Switching, and Hybrid Switching In Modern Communication Networks

AWODELE S. O

Department of Computer Science,
Babcock University Ilshan-Remo, Ogun State, Nigeria
awodeles@babcock.edu.ng

MUSTAPHA M. M

Department of Computer Science,
Babcock University Ilshan-Remo, Ogun State, Nigeria
mustapha0219@pg.babcock.edu.ng

OLORUNYOMI O. B

Department of Computer Science,
Babcock University Ilshan-Remo, Ogun State, Nigeria
olorunyomi0052@pg.babcock.edu.ng

CHUKWULUBE I

Department of Computer Science,
Babcock University Ilshan-Remo, Ogun State, Nigeria
chukwulube0408@pg.babcock.edu.ng

FARUNA J. O

Department of Computer Science,
Babcock University Ilshan-Remo, Ogun State, Nigeria
faruna0100@pg.babcock.edu.ng

FAYEMI T. A

Department of Computer Science,
Babcock University Ilshan-Remo, Ogun State, Nigeria
fayemi0197@pg.babcock.edu.ng

&

OJUAWO O. O

Department of Computer Science,
Babcock University Ilshan-Remo, Ogun State, Nigeria
ojuawo0687@pg.babcock.edu.ng

Article history:

Received: Jan 2026;

Received in revised form:

22 Jan 2026;

Accepted: 27 Jan 2026;

Keywords:

Abstract

The diversity of the traffic in the communication networks underscores the inadequacy of either circuit switching or packet switching. Packet switching is good at statistical multiplexing, and may prove difficult to provide bounded delay and low jitter without excessively provisioning it. Circuit switching on the other hand provides certain delay and bandwidth. In this paper, a

Awodele S. O, Mustapha M. M, Olorunyomi O. B, Chukwulobe I, Faruna J. O, Fayemi T. A & Ojuawo O. O
literature search and synthesis of circuit switching, packet switching, and hybrid modes is presented based on the principle, current advances, and performance analysis. We discuss such important hybrid paradigms as Asynchronous Transfer Mode (ATM), Multiprotocol Label Switching (MPLS), optical circuit/packet data-center architectures, and 5G-Time-Sensitive Networking (TSN) integration, as well as dynamic circuit allocation algorithms. We find through our synthesis that selective hybrid switching, which dynamically allocates circuit-like resources to URLLC flows or long-lived elephant flows and uses packet switching to serve best-effort traffic, is better in the performance metrics of latency (example, 10 milliseconds of latency in loads where best-effort traffic is provided by the use of a pure paradigm) and throughput, energy consumption, and QoS as the reviewed studies propose. Nanosecond-scale optical circuit switches and programmable data planes have nanosecond optical configurability, enabling historical scalability problems to reduce. Subsequently, hybrid switching creates an effective grid of 6G mobile networks, future data network interconnects, industrial automation, and deterministic network.

Introduction

1.1 Background to the study

Communication networks have been historically developed by two basic switching paradigms, namely: circuit switching and packet switching [1]-[4]. Circuit switching provides a specific end-to-end path over the period of the session, which guarantees bandwidth and predictable delay [6]. Packet switching as an alternative on the other hand, breaks down data into separately routed packets, sharing resources through statistical multiplexing to achieve high utilization and resilience [2], [15]. These models supported the global public switched telephone network (PSTN) and the Internet respectively [16], [21].

Modern networks have to accommodate the varied needs, such as ultra-reliable low-latency communication (URLLC), augmented mobile broadband (eMBB), massive machine-type communications (mMTC), real-time industrial control, and high-volume data transfers [11]. The pure paradigms are inadequate and this has led to the development of hybrid architectures which integrate circuit determinism and packet flexibility [5]-[14].

1.2 Statement of the Problem

Modern communication infrastructures require time-sensitive traffic to have a small latency and low jitter as well as efficiency in resource utilization to support

bursty and elastic traffic [18], [19]. Pure packet-switched networks are characterized by varying queuing delays and packet loss at load (like a Fifth Generation (5G) ultra-reliable low-latency communication (URLLC) aims at an end-to-end latency of 1 millisecond with a 99.99% reliability [45], [46], conventional Internet Protocol (IP) networks may accept latencies in the (10-50) ms range at peak load [47], [48]. Pure, circuit switched networks waste bandwidth during idle modes and scaling characteristics are inferior to varying rate traffic [24]-[28].

Aim and Objectives

This paper aims to conduct a systematic comparative analysis of the circuit switching, packet switching and hybrid switching and their applicability to the current as well as future network through a literature synthesis.

The specific objectives are to:

- i. Compare the functionality, performance metrics, strengths and weaknesses of circuit and packet switching.
- ii. Examine how major hybrid technologies have evolved in history, operation and objectives and how successful they were.
- iii. Determine major challenges, tradeoffs and situations in which hybrid switching proves to be better than the others and

suggest a new framework in terms of classifications.

Significance of the Study

Integrating theory and current trends, this paper offers a definitive source to researchers and designers that consider the revival of circuit-switching principles and integrating them with the packet switching to address the strict quality-of-service (QoS) requires in the Fifth Generation (5G)/sixth-generation (6G) networks, data-centers networks, and Internet of Things automation [29], [32], [34]-[36].

Related Works

Switching paradigm development is widely recorded. Pre-emptive circuit switching focused more on deterministic performance and bandwidth guarantees, the basis of the public switched telephone network (PSTN) [37], [38]. It was later enhanced by efficiency and resilience with the invention of packet switching in Advanced Research Projects Agency Network (ARPANET) and Internet Protocol (IP) architectures [39].

Mixed methods addressed gaps of reliability and efficiency. Virtual circuits in the packet networks were introduced with Asynchronous Transfer Mode (ATM) and Multiprotocol Label Switching (MPLS) to provide predictable performance with preservation of statistical multiplexing [13], [17]. Such has been succeeded by recent stress on optical circuit/packet integration, Fifth Generation (5G)-Time-Sensitive Networking (TSN), and programmable data planes [40], [49]-[51]. They bring to the fore hybrid possibilities of ultra-reliable low-latency communication (URLLC), industrial automation, and scalable data centers [41], [52]. This indicates that literature always uses the hybrid switching as a paradigm in the

best balance between efficiency, scalability and determinism [42].

Gap Analysis

Available surveys give a general overview but tend to be shallow on integrations of Fifth Generation (5G)-Time-Sensitive Networking (TSN) after 2023 or programmable data planes such as Programming Protocol-independent Packet Processors (P4) on hybrid control [40], [41], [53], [54].

This review summarizes recent work post-2020, such as hybrid traffic scheduling in Fifth Generation (5G)-Time-Sensitive Networking (TSN) [49], [50], and presents innovative classification of hybrids in terms of the level of integration, the necessity of the systematic assessment in new 6G settings.

Study Methodology

This paper utilizes a literature review and a methodical comparison. It is theoretical, implying no original data gathering, experiments, and modeling. This was done in three steps:

- i. Thorough collection and synthesis of concepts, architectures, performance measurement, strengths and weaknesses of operational characteristics of circuit and packet switching, in the form of comparing tables and graphs.
- ii. Recent algorithms, hybrid models design, implementation, and analysis of important hybrid models, such as: Asynchronous Transfer Mode (ATM), Integrated Services (IntServ)/Resource Reservation Protocol (RSVP), Multiprotocol Label Switching (MPLS) traffic engineering, optical circuit/packet integration, Fifth Generation (5G)-Time-Sensitive

Awodele S. O, Mustapha M. M, Olorunyomi O. B, Chukwulobe I, Faruna J. O, Fayemi T. A & Ojuawo O. O
 Networking (TSN) hybrid scheduling [49]-[51], and analysis and evaluation of design, implementation, and performance.

iii. Cross-source synthesis in order to discover constraints, trade-offs usage situations and open research questions in hybrid switching.

To guarantee rigor, searches were conducted in databases such as Institute of Electrical and Electronics Engineers (IEEE) Xplore, Association for computing machines (ACM) Digital Library, Scopus, and Google scholar databases using searches by terms such as circuit switching, packet switching, hybrid switching, Multiprotocol Label Switching (MPLS) and Asynchronous Transfer Mode (ATM), and Fifth Generation (5G) Time-

Sensitive Networking (TSN) integration, optical hybrid networks, and programmable data planes hybrid (1990-2025).

- Inclusion criteria: peer-reviewed articles/conferences having comparisons of performance or architectures.
- Exclusion: non-English and non-technical reports.
- Articles were filtered to extract data related to measurement of parameters such as latency, throughput, utilization and reliability of approximately 100 articles and reviewed 55 of these articles in depth.
- Some of the analysis tools were performance matrices, evolutionary timelines and taxonomic diagrams.

Evolution of Communication Networks

Table 1.0: Evolution of Communication Networks

Period	Technology	Key Concept	Core Applications
Legacy Period (1900s-1970s)	Circuit Switching	Dedicated physical path established for the duration of a call	Public Switched Telephone Network (PSTN) (Landline phones), early Fax.
Internet Period (1970s-1990s)	Packet Switching (TCP/IP)	Best-effort delivery; data broken into packets and routed independently	Advanced Research Projects Agency Network (ARPANET), Email and World Wide Web
Quality of Service (QoS) and Cell Period (1990s-2000s)	Asynchronous Transfer Mode (ATM), Frame Relay, Resource Reservation Protocol (RSVP)	Cell Switching & Reservation; attempts to give packet networks "circuit-like" guarantees	Early Voice over Internet Protocol (VoIP), Integrated Services Digital Network (ISDN) and WANs
Hybrid/Label Period (2000s-2010s)	Internet Protocol/Multiprotocol Label Switching	Virtual Circuits; uses labels to create deterministic paths through packet	VPNs, ISP Backbones and IPTV

	(IP/MPLS) and Synchronous Optical Networking/Synchronous Digital Hierarchy (SONET/SDH)	networks	
Next-Generation Period (2010s-Present)	Software-Defined Networking (SDN), 5G	Programmable Networks; separation of the Control Plane from the Data Plane	Cloud Computing, 5G Slicing, IoT, Edge Computing

Comparative Analysis

Circuit, Packet, and Hybrid Switching Comparison

As established by the development of public switched telephone network (PSTN) to Next Generation Network (NGN), Voice over Internet Protocol (VoIP) blossoming and

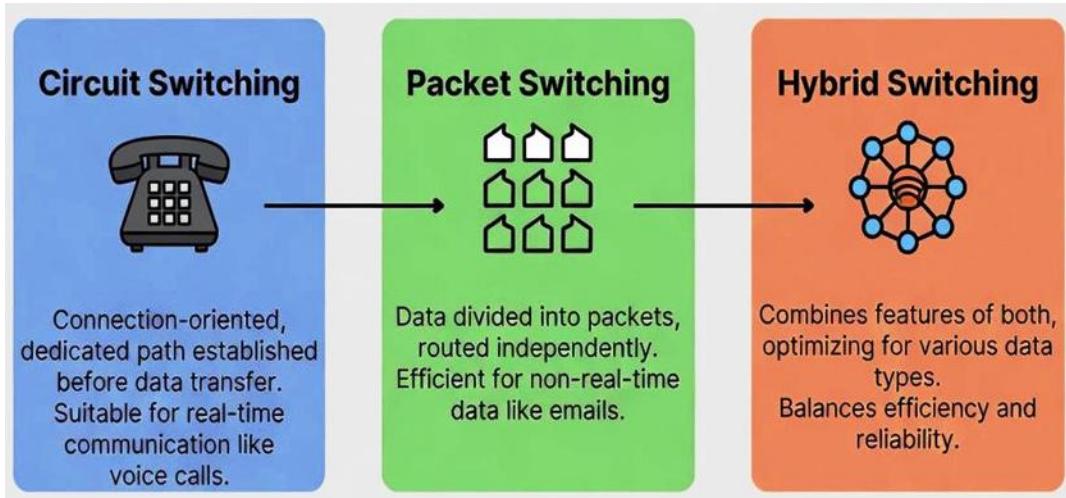
Multiprotocol Label Switching (MPLS)/Fifth Generation (5G) advances, circuit switching is reliable and guaranteed performance, packet switching flexible and efficient, and hybrids integrated between the two on different needs.

Table 2.0: Comparison of Circuit/Packet/Hybrid Switching

Category	Circuit Switching	Packet Switching	Hybrid Switching
Foundations	It is a dedicated private path for session	It splits data into packets and shares resources	It combines circuit reliability, and packet efficiency
Performance	There is guaranteed bandwidth, low latency, and ineffective capacity use	There is high resource utilization, with variable delay/jitter.	Differentiated Services (DiffServ) and Resource Reservation Protocol (RSVP) ensure efficient and low delay through QoS mechanisms
Protocols	Public Switched Telephone Network (PSTN) and Integrated Services Digital Network (ISDN)	It is made of Transmission Control Protocol/Internet Protocol (TCP/IP) and Internet Protocol/Multiprotocol Label Switching (IP/MPLS)	Multiprotocol Label Switching (MPLS), Asynchronous Transfer Mode (ATM), and Software Defined Networking (SDN)
Uses	Legacy phone networks	Voice over Internet Protocol (VoIP, Fifth Generation (5G), and Data centers	Applicable in network migration and streaming multimedia

Proposed Classification Framework for Hybrid Switching

To move beyond general comparisons, we propose a novel three-level classification framework for hybrid switching that is based on integration depth. This framework enables weighted comparisons. For instance, Level 3 offers the lowest latency but has higher complexity.


- Level 1 (QoS) emulation is achieved using overlay mechanisms on packet networks (such as Differentiated Services (DiffServ) to prioritize packets and emulate circuit-like behavior with no dedicated paths.
- Level 2 (Virtual Circuits) involves logical circuits through packet infrastructure (like Multiprotocol Label Switching (MPLS) and Label Switched Paths (LSPs).
- Level 3 (Dynamic Physical Circuits) involves the reconfiguration of

physical resources at runtime, such as optical hybrids with sub-millisecond switching. [43], [44]

In-Depth Hybrid Mechanisms

Label Switched Paths (LSPs) are created as virtual circuits by MPLS, where ingress routers assign labels and intermediate nodes switch based on labels for deterministic forwarding, which combines packet multiplexing with circuit predictability [17].

In Fifth Generation (5G)-Time-Sensitive Networking (TSN), deterministic slots/cycles are dynamically managed within Fifth Generation (5G)'s statistical multiplexing: Time-Sensitive Networking (TSN) gates control packet release, integrated with Fifth Generation (5G) semi-persistent scheduling for hybrid traffic, ensuring <1 ms latency for critical flows [49], [50].

Figure 1.0: Switching Diagram for Circuit/Packet/Hybrid

Figure 1.0 above shows the Evolution of Network Switching since the analogue based system to the current software-defined systems. It divides technological changes into historical periods, depending on the way they treat data and the type of problems they address.

Outcomes and Discussions

Packet switching and circuit switching

Circuit switching offers zero jitter at the cost of low utilization; and packet switching is the most efficient in multiplexing but variable delay entails over-provisioning.

Hybrid Solution Development and Performance

Switches such as Multiprotocol Label Switching (MPLS) and Fifth Generation (5G)-Time-Sensitive Networking (TSN) save complexity and energy; programmable planes (Programming Protocol-independent Packet Processors (P4)) offer less than the us controlling bandwidth [53], [54].

6.3 Problems, Trade-offs and Application Scenarios

Signaling and prediction are among the outstanding concerns; hybrids are best in data centers and sixth-generation (6G) tactile applications, at the expense of determinism.

Recommendations

References

- [1] Department of Electronics and Electrical Communication Engineering, IIT Kharagpur, "Lesson 2: Circuit switching," in Module 2: Communication switching, ver. 1.
- [2] Department of Electronics and Electrical Communication Engineering, IIT Kharagpur, "Lesson 4: Connectionless and connection oriented packet switching," in Module 2: Communication switching, ver. 1.
- [3] Department of Electronics and Electrical Communication Engineering, IIT Kharagpur, "Lesson 5: Communication process," in Module 3: Communication process and layered architecture, ver. 1.
- [4] Department of Electronics and Electrical Communication Engineering, IIT Kharagpur, "Lesson 29: Space switching," in Module 9: Digital switching, ver. 1.
- [5] K. Harras, "Lecture 15: Virtual circuits, ATM, MPLS & VLANs," in 15-441 Computer Networks, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
- [6] A. E. Joel, Jr., "Circuit-switching fundamentals," in Fundamentals of Digital Switching, J. C. McDonald, Ed. New York, NY, USA: Plenum Press, 1983, ch. 1.
- [7] L. Liu, L. Gong, S. Yang, J. Xu, and L. Fortnow, "Better algorithms for hybrid circuit and packet switching in data centers," arXiv:1712.06634v1 [cs.NI], Dec. 2017.
- [8] P. Yin, S. Diamond, B. Lin, and S. Boyd, "Network optimization for unified packet and circuit switched networks," arXiv:1808.00586v3 [cs.NI], May 2019.
- [9] X. Xue et al., "Optical switching data center networks: Understanding techniques and challenges," arXiv:2302.05298v1 [cs.NI], Feb. 2023.
- [10] J. H. Chen, "Circuit switching and packet switching," lecture slides, Chang Gung Univ., Taoyuan, Taiwan. [Online]. Available: <https://www.academia.edu/9772128/>

Selective hybrid switching on heterogeneous traffic with flows larger than 100 MB or jitter less than 100 ms should be adopted and allocate circuits [55]. The sub-ms hardware research, Programming Protocol-independent Packet Processors (P4) classification, and lightweight protocols are in the focus of the sixth-generation (6G) research.

Conclusions

Existing paradigms are not the future of the needs of next-generation; hybrids that are selective, with fast fabrics and programmable scheduling, are the best architecture to sixth-generation (6G) data-center and the Internet of Things (

Awodele S. O, Mustapha M. M, Olorunyomi O. B, Chukwulobe I, Faruna J. O, Fayemi T. A & Ojuawo O. O
17673 Circuit Switching and Packet Switching

[11] A. Gupta and R. K. Jha, "A survey of 5G network: Architecture and emerging technologies," *IEEE Access*, vol. 3, pp. 1206–1232, 2015.

[12] J. Wu, C. Liu, J. Tao, S. Liu, and W. Gao, "Hybrid traffic scheduling in 5G and time-sensitive networking integrated networks for communications of virtual power plants," *Appl. Sci.*, vol. 13, no. 13, p. 7953, Jul. 2023.

[13] A. Durresi and R. Jain, *Asynchronous Transfer Mode (ATM)*, Louisiana State University and Washington University in St. Louis, pp. 1–57.

[14] M. A. Schneps-Schneppé, "Circuit Switching is Coming Back?," *Automatic Control and Computer Sciences*, vol. 49, no. 1, pp. 57–65, 2015, doi: 10.3103/S0146411615010083.

[15] V. G. Cerf and R. E. Kahn, "A Protocol for Packet Network Intercommunication," *IEEE Transactions on Communications*, vol. COM-22, no. 5, pp. 637–648, May 1974.

[16] [Author not specified], Chapter 2: *Circuit and Packet Switching*, Thesis document, pp. 20–33.

[17] S. Kalyanaraman, R. Jain, K. Kompella, P. Ashwood-Smith, and B. Jamoussi, *Multiprotocol Label Switching (MPLS)*, Lecture slides, Ohio State University, Juniper Networks, and Nortel Networks, 2002.

[18] M. H. P. Kumar, "Combination of Packet Switching and Circuit Switching in the Upcoming Computer Networks," *International Journal of Innovative Research in Computer and Communication Engineering*, vol. 3, no. 3, pp. 1951–1956, Mar. 2015, doi: 10.15680/ijircce.2015.0303114.

[19] S. Sharma, *Comparative Study of Networks Using Packet and Circuit Switching within a Single Network*, M.S. thesis, Dept. of Computer Science, Rochester Institute of Technology, Rochester, NY, USA, Nov. 1986.

[20] L. G. Roberts, "The Evolution of Packet Switching," *Proceedings of the IEEE*, vol. 66, no. 11, pp. 1307–1313, Nov. 1978.

[21] S. Gordon, *Circuit Switching and Packet Switching*, Lecture notes, School of Information Technology, SIIT, Thailand, 2009.

[22] N. Nandhakumar, "A Variety of Switching Methods in Communication Networks," *Journal of Emerging Technologies and Innovative Research (JETIR)*, vol. 6, no. 3, pp. 99–104, Mar. 2019.

[23] P. Molinero-Fernández and N. McKeown, "The Performance of Circuit Switching in the Internet," *Journal of Optical Networking*, vol. 2, no. 3, pp. 113–127, Mar. 2003.

[24] R. Agarwal, *Computer Networks: Architecture and Protocols*, Lecture 2 – Sharing Networks: "Circuits" and "Packets", Cornell University, Lecture Notes, 2020.

[25] N. Chen, *Circuit Switching vs Packet Switching*, Technical Report, 2021.

[26] D. Sahu, D. Tiwari, P. Singh, R. Bhatt, and R. S. Thakur, "Network Switching: Traditional Techniques and Evolution," *International Journal of Engineering and Computer Science*, vol. 5, no. 11, pp. 19034–19036, Nov. 2016, doi: 10.18535/ijecs/v5i11.56.

- [27] M. Torlak, Packet Switching and Computer Networks, EE4367 Telecom Switching & Transmission Lecture Notes, University of Texas at Dallas, 2019.
- [28] J. Postel, "Internet Protocol," Request for Comments: 791, Information Sciences Institute, University of Southern California, Sept. 1981.
- [29] R. Dixon and D. Kushi, "Data Link Switching: Switch-to-Switch Protocol," Request for Comments: 1434, IBM, Mar. 1993.
- [30] R. Braden, D. Clark, and S. Shenker, "Integrated Services in the Internet Architecture: an Overview," Request for Comments: 1633, ISI/MIT/Xerox PARC, Jul. 1994.
- [31] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, "Resource ReSerVation Protocol (RSVP) – Version 1 Functional Specification," Request for Comments: 2205, ISI/UCLA/IBM Research/University of Michigan, Sept. 1997.
- [32] D. Awduche, J. Malcolm, J. Agogbua, M. O'Dell, and J. McManus, "Requirements for Traffic Engineering Over MPLS," Request for Comments: 2702, UUNET (MCI Worldcom), Sept. 1999.
- [33] E. Rosen, A. Viswanathan, and R. Callon, "Multiprotocol Label Switching Architecture," Request for Comments: 3031, Cisco Systems/Force10 Networks/Juniper Networks, Jan. 2001.
- [34] P. Baran, On Distributed Communications: I. Introduction to Distributed Communications Networks, RAND Corporation Memorandum RM-3420-PR, Aug. 1964.
- [35] D. R. Brown II, Communication and Networking: Circuit and Packet Switching Basics, Worcester Polytechnic Institute Lecture Notes, 2018.
- [36] Switching: An Engineering Approach to Computer Networking, Teaching Document, 2019.
- [37] Chapter 10: Circuit Switching and Packet Switching – Answers to Questions and Problems, Educational Notes, 2020.
- [38] International Telecommunication Union, Definitions of Terms Related to the Quality of Telecommunication Services, Recommendation ITU-T E.800, Sept. 2008.
- [39] C. Lee, Migration Scenarios from Legacy Networks to NGN in Developing Countries, ITU-T Technical Paper, Mar. 2013.
- [40] M. Torlak, Packet Switching and Computer Networks, EE4367 Telecom Switching & Transmission Lecture Notes, University of Texas at Dallas, 2019.
- [41] J. Postel, "Internet Protocol," Request for Comments: 791, Information Sciences Institute, University of Southern California, Sept. 1981.
- [42] International Telecommunication Union, Definitions of Terms Related to the Quality of Telecommunication Services, Recommendation ITU-T E.800, Sept. 2008.
- [43] G. Zervas et al., "Sub-microsecond optical circuit switched data center network," presented at the Transnet Conf., U.K., 2020.
- [44] X. Xue and N. Calabretta, "Nanosecond optical switching and control system for data center networks," Nat. Commun., vol. 13, no.

Awodele S. O, Mustapha M. M, Olorunyomi O. B, Chukwulobe I, Faruna J. O, Fayemi T. A & Ojuawo O. O
 1, pp. 1–10, Apr. 2022, doi: 10.1038/s41467-022-29913-1.

[45] A1 Digital, “uRLLC: The 5G component simply explained,” A1 Digital Knowledge Hub, 2025. [Online]. Available: <https://www.a1.digital/knowledge-hub/urllc-the-5g-component-simply-explained/>.

[46] A. Bhardwaj et al., “Ultra-reliable low-latency in 5G: A close reality or a distant goal?,” in Proc. 23rd ACM Workshop Hot Topics Netw. (HotNets), Irvine, CA, USA, Nov. 2024, pp. 1–7, doi: 10.1145/3696348.3696862.

[47] IR Team, “Network latency - common causes and best solutions,” IR Guides, [Online]. Available: <https://www.ir.com/guides/what-is-network-latency>.

[48] M. Gorsuch, “How much network latency is ‘typical’ for east - west coast USA?,” Server Fault, Apr. 30, 2010. [Online]. Available: <https://serverfault.com/questions/137348/how-much-network-latency-is-typical-for-east-west-coast-usa>.

[49] J. Li, Y. Chen, Y. Xiao, and Z. Lv, “Hybrid traffic scheduling in 5G and time-sensitive networking integrated networks for communications of virtual power plants,” Appl. Sci., vol. 13, no. 13, p. 7953, Jul. 2023, doi: 10.3390/app13137953.

[50] L. Winkelbauer, W. Haselmayr, and A. Springer, “Time-sensitive networking over 5G: Experimental evaluation of a hybrid 5G and TSN system with IEEE 802.1Qbv traffic,” arXiv preprint arXiv:2407.05989, Jul. 2024.

[51] S. Egger, F. Dürr, B. Varga, M. De Andrade Jardim, and G. Prateek Sharma, “Wireless-aware TSN engineering: Implications for 5G and upcoming 6G networks,” IEEE Netw., vol. PP, no. 99, pp. 1–1, 2025, doi: 10.1109/MNET.2025.3556002.

[52] Y. Zhao, X. Xue, X. Ren, W. Li, and S. B. Zhang, “Optical switching data center networks: Understanding techniques and challenges,” Comput. Netw. Commun., vol. 1, no. 2, pp. 272–291, Sep. 2023, doi: 10.37256/cnc1320233159.

[53] C. Cascone and B. O’Connor, “SD-Fabric: An end-to-end programmable data plane – A year in review (Part 1),” P4.org Blog, Dec. 2021. [Online]. Available: <https://p4.org/p4/sd-fabric-an-end-to-end-programmable-data-plane-a-year-in-review-part-1.html>.

[54] J. Alvarez-Horcajo, I. Martínez-Yelmo, D. Lopez-Pajares, J. A. Carral, and M. Savi, “A hybrid SDN switch based on standard P4 code,” IEEE Commun. Lett., vol. 25, no. 5, pp. 1482–1485, May 2021, doi: 10.1109/LCOMM.2021.3049570.

[55] H. Liu, F. Lu, A. Forencich, R. Kapoor, G. M. Voelker, G. Papen, and A. C. Snoeren, “Scheduling techniques for hybrid circuit/packet networks,” in Proc. 11th ACM Int. Conf. Emerging Netw. Exp. Technol. (CoNEXT), Heidelberg, Germany, Dec. 2015, pp. 1–13, doi: 10.1145/2716281.2836126.