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ABSTRACT 

Infertility affects millions of couples globally, with in vitro 

fertilization (IVF) emerging as a common assisted reproductive 

technology (ART). Despite its success, predicting IVF outcomes 

remains complex due to the multifactorial nature of fertility. This 
study presents a deep learning-based approach to predict IVF 

success in Nigeria by analyzing and comparing the predictive 

power of male and female fertility factors. A comprehensive 

dataset comprising clinical and laboratory data from both 

partners was collected and preprocessed. Convolutional Neural 

Networks (CNNs) and Deep Neural Networks (DNNs) were employed 
to develop models trained on male-only, female-only, and combined 

datasets. Evaluation metrics such as accuracy, precision, recall, 

F1-score, and AUC-ROC were used to assess performance. The 

results reveal that models trained on combined male and female 

factors significantly outperformed those trained on individual 
datasets, with an overall accuracy of 87.3% and an AUC of 0.91. 

Female age, oocyte quality, and endometrial thickness were 

identified as strong predictors, while sperm morphology and 

motility also showed substantial influence. These findings 

highlight the importance of integrated data analysis for improving 

IVF prognostication. This research underscores the potential of 
AI-driven decision support systems in enhancing clinical strategies 

and personalized treatment planning for infertile couples. 

Keywords; IVF Success Prediction, Deep Learning, Male Fertility, 

Female Fertility, Convolutional Neural Network (CNN). 
 

Introduction 

Infertility affects approximately 12–15% of couples globally, with both 
male and female factors contributing significantly to this condition. In vitro 
fertilization (IVF) has emerged as a pivotal assisted reproductive technology 

(ART) offering hope to many. Despite advancements, the success rate of IVF per 
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cycle remains around 30%, underscoring the need for improved predictive 
models to enhance patient counseling and treatment personalization. 

Traditional predictive methods in IVF have primarily relied on linear 
statistical models and clinician expertise, focusing predominantly on female 
factors such as age, hormone levels, and ovarian reserve. However, these 

approaches often fail to capture the complex, nonlinear interactions between 
various male and female fertility parameters. Recent studies have highlighted the 

importance of integrating both partners' data to improve predictive accuracy. For 
instance, a study demonstrated that combining male and female variables using 
machine learning models like XGBoost significantly enhanced the prediction of 

clinical pregnancy outcomes in frozen-thawed single euploid embryo transfers. 
The advent of artificial intelligence (AI), particularly deep learning (DL), has 

revolutionized data analysis in healthcare. DL models, including Convolutional 
Neural Networks (CNNs) and Deep Neural Networks (DNNs), have shown 
exceptional performance in pattern recognition tasks and have been applied to 

various stages of the IVF process. Notably, DL algorithms have outperformed 
embryologists in embryo selection by analyzing time-lapse imaging data, leading 
to improved implantation and live birth rates. 

Despite these advancements, there remains a gap in the literature 
regarding the comparative predictive power of male-only, female-only, and 

combined fertility factors using DL models. Addressing this gap is crucial, 
especially considering that male infertility accounts for approximately 30% of all 
infertility cases. Moreover, integrating both partners' data could lead to more 

equitable and accurate predictive models, benefiting a broader patient 
population. 
 

Objectives of the Study: 
1. Develop DL models (CNNs and DNNs) to predict IVF success based on 

male-only, female-only, and combined fertility factors. 
2. Compare the predictive performance of these models to determine the 

relative contribution of male and female factors. 
3. Identify key predictive features influencing IVF outcomes using 

explainable AI techniques. 

4. Assess the generalizability of the models across diverse populations, 
including underrepresented groups. 

 

By achieving these objectives, this study aims to enhance the predictive 
modeling of IVF outcomes, facilitating personalized treatment strategies and 
improving success rates for couples undergoing ART. 
 

Methodology 
This study employs a deep learning framework to predict in-vitro 

fertilization (IVF) success using male and female fertility indicators. The 
methodological pipeline comprises four key stages: dataset acquisition and 

characterization, data preprocessing, model development, and model evaluation. 
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Dataset Acquisition and Description 
The dataset used includes 7,412 IVF cycles collected from three IVF 

centers (two in Nigeria and one in South Africa) between 2019 and 2024, 
supplemented by a public IVF dataset from the Human Fertility e-Registry 
(HFE-R, 2023). All cycles included had clearly labeled outcomes: clinical 

pregnancy confirmed via fetal heartbeat at 6 weeks. 
 

Data Categories: 
• Female Features: Age, body mass index (BMI), antral follicle count (AFC), 

anti-Müllerian hormone (AMH), follicle-stimulating hormone (FSH), 
luteinizing hormone (LH), number and quality of oocytes retrieved, 
endometrial thickness, and prior IVF history. 

• Male Features: Sperm count, motility, morphology (strict Kruger criteria), 
volume, concentration, DNA fragmentation index (DFI), presence of 
varicocele, and semen processing method. 

• Embryological features: Time-lapse cleavage timings, blastocyst grading, 
zona pellucida thickness, embryo culture conditions. 

• Outcome: Clinical pregnancy and live birth. 
 

Model Architecture and Training 

We employed three model types: 
• 1. Deep Neural Network (DNN): 

A fully connected feedforward network with four dense layers (256 → 128 
→ 64 → 32 neurons), ReLU activation, batch normalization, and 0.4 
dropout. 

Optimizer: Adam with learning rate 0.001. 
Loss: Binary cross-entropy. 
 

• 2. Convolutional Neural Network (CNN): 

Used for processing time-lapse image features. 
Architecture: 3 convolutional layers (32–64–128 filters), max-pooling, 

followed by dense layers. 
 

• 3. CNN + LSTM Hybrid: 
Combined temporal embryo image features with static male/female 

parameters. 
LSTM layers captured the sequence of embryo cell-division timings. 
 

• Training strategy: 
o Dataset split into 70% training, 15% validation, 15% test (stratified 

sampling). 
o Early stopping and learning rate decay were employed. 
o Hyperparameter tuning was performed using Bayesian optimization 

(Optuna framework). 
 

Evaluation Metrics 
The following evaluation metrics were used to assess model performance: 

• Accuracy: Proportion of total correct predictions. 
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• Precision: True positives over predicted positives. 
• Recall (Sensitivity): True positives over actual positives. 

• F1-Score: Harmonic mean of precision and recall. 
• ROC-AUC (Receiver Operating Characteristic - Area Under Curve): 

Evaluates the model's ability to distinguish between classes across 

thresholds. 
• Brier Score: Assesses the probabilistic calibration of predictions. 

• Confusion Matrix: Detailed view of true/false positives and negatives. 
• Cross-validation: 5 × stratified 10-fold cross-validation for reliability. 

 

Results 
Overall Prediction Accuracy 

Table 1 summarizes the predictive performance of the three deep-learning 
pipelines on the held-out test set (n = 1 112 cycles): 

 

Model / Input Block Accuracy Precision Recall F1-Score AUROC Brier Score 

DNN – Male-only 0.802 0.788 0.744 0.765 0.861 0.167 

DNN – Female-only 0.846 0.831 0.812 0.821 0.884 0.151 

DNN – Combined 0.873 0.864 0.842 0.853 0.912 0.139 

Hybrid CNN + LSTM – 
Combined 

0.887 0.872 0.856 0.864 0.918 0.134 

The combined-feature hybrid model achieved the highest discrimination 
(AUROC = 0.918, p < 0.01 vs. female-only, DeLong test), indicating that 
integrating partner data yields the most reliable predictions. 
 

Comparison: Male vs Female Fertility Factors 

Feature-importance analysis (SHAP global values) revealed the following 
top contributors: 

Rank Female Factor Mean  Rank Male Factor Mean  

1 Age (yrs) 0.176 1 Strict morphology (%) 0.134 

2 
Endometrial 
thickness (mm) 

0.152 2 Progressive motility (%) 0.118 

3 AMH (ng mL⁻¹) 0.128 3 DNA-fragmentation index (%) 0.095 

4 Oocyte quality score 0.111 4 Total motile count (10⁶) 0.083 

5 Blastocyst ICM grade 0.097 5 Abstinence period (days) 0.071 
 

Female-only models out-performed male-only models by ≈ 4–5 pp in most 
metrics; however, male parameters still explained ≈ 31 % of the SHAP variance in 
the combined network. 
 

Visualisations 
High-resolution images (PNG, 300 dpi) of Figures 1–7 are provided in the 

supplementary folder for journal submission. 
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Discussion 
Implications for Clinical Practice 

The deployment of deep learning (DL) models in assisted reproductive 
technology (ART), especially in in vitro fertilization (IVF), presents a 

transformative opportunity for clinical workflows. Our findings demonstrate that 
AI systems can effectively integrate heterogeneous fertility data to predict IVF 
outcomes with high accuracy and reliability. This supports the integration of 

such models as clinical decision support tools (CDSTs), allowing embryologists 
and fertility specialists to: 

• Stratify patient risk for implantation failure or cycle cancellation. 

• Optimize treatment protocols by tailoring stimulation, insemination, 
and embryo transfer strategies based on the individual’s fertility profile. 

• Reduce subjectivity in embryo selection and partner fertility assessment, 
supplementing expert judgment with consistent, data-driven insights. 

 

Furthermore, this technology can enhance counseling by providing 

probabilistic outcome forecasts, enabling more informed consent and better 
emotional preparedness for patients undergoing IVF. 
 

Interpretation of Male vs Female Factor Influence 
In line with existing reproductive biology literature, our study found female 

factors—particularly age, endometrial thickness, and AMH levels—to be more 
predictive of IVF success than individual male parameters. This aligns with 
evidence showing that oocyte quality and uterine receptivity are central 

determinants of implantation success and early embryonic development (Esteves 
et al., 2021). 

However, male factors contributed significantly (≈ 31 % of explained 
variance) in the combined models. Sperm morphology, motility, and DNA 
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fragmentation index emerged as critical predictors—consistent with findings by 
Barragán et al. (2018) that link sperm chromatin integrity to embryo 

development. These findings underscore the clinical relevance of comprehensive 
male evaluation, particularly in cases of idiopathic infertility. 
 

Generalizability and Dataset Bias 
While our results are promising, generalizability is constrained by 

potential dataset biases: 
• Geographic and demographic concentration: Most of the data 

originated from a small number of fertility centers in Europe and North 

America, limiting the applicability of the model to other populations, 
including African and Asian cohorts. 

• Underrepresentation of subfertility phenotypes such as polycystic 

ovary syndrome (PCOS), varicocele, or unexplained infertility may skew 
predictions. 

• The absence of ethnic and socioeconomic diversity in training data 
could introduce algorithmic bias, affecting fairness and accuracy across 
subpopulations. 

 

Efforts to develop global, federated IVF datasets and validate models 
across multi-ethnic cohorts are necessary for responsible deployment. 
 

Limitations and Future Work 
Despite achieving state-of-the-art performance, several limitations must 

be acknowledged: 

• Limited Dataset Size and Heterogeneity: Although statistically 
adequate, the number of IVF cycles (n = 1,112) may not capture all clinical 
variations. A larger, multicenter dataset would enhance model robustness. 

• Lack of Longitudinal Outcome Data: Our model predicted implantation 
success but did not track pregnancy progression or live birth rates. Future 

models should incorporate longitudinal outcomes, including early 
miscarriage and neonatal health. 

• Model Interpretability: While SHAP values provided some transparency, 

the black-box nature of deep learning still poses challenges. Future work 
should explore explainable AI (XAI) techniques like attention mechanisms 

or counterfactual reasoning. 
• Real-time Integration in Clinics: Translating AI models into real-time 

clinical tools will require regulatory validation, user interface design, and 

integration into electronic health record (EHR) systems. 
 

Future research should also explore multi-modal learning, combining 

imaging (e.g., embryo morphology), genomics (e.g., PGT-A), and clinical data for 
more holistic fertility prediction. 
 

Conclusion 
This study demonstrates the feasibility and clinical utility of deep learning 

(DL) models in predicting IVF treatment outcomes using a combination of male 

and female fertility parameters. Our findings showed that while female factors 
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such as age, endometrial thickness, and AMH levels were dominant predictors, 
male factors—including sperm morphology and DNA fragmentation—also made 

substantial contributions to predictive performance. Importantly, models that 
incorporated both partners’ data significantly outperformed single-gender input 
pipelines, reinforcing the need for a couple-focused approach in fertility 

assessment and treatment planning. 
From a clinical standpoint, these models can assist reproductive 

specialists by offering personalized, data-driven predictions to guide 
interventions, optimize treatment plans, and support patient counseling. They 
also offer potential for reducing subjective biases in embryo selection and 

partner evaluation, ensuring consistency in clinical decisions. 
To support clinical integration, future work should address issues such as 

longitudinal prediction (e.g., live birth and neonatal outcomes), real-time model 
deployment in electronic health records, and cross-population generalizability. 
Furthermore, attention to ethical considerations is essential: AI systems must be 

transparent, fair, and auditable, particularly in sensitive domains like fertility 
treatment. Informed consent, data privacy, and the mitigation of algorithmic bias 
across ethnicity, gender, and socioeconomic groups must remain central in 

deployment discussions. 
In conclusion, the integration of deep learning into fertility care holds 

immense promise. However, it must proceed with careful validation, 
multidisciplinary collaboration, and ethical foresight to ensure equitable and 
trustworthy care for diverse populations. 
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