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ABSTRACT

Infertility affects millions of couples globally, with in vitro
fertilization (IVF) emerging as a common assisted reproductive
technology (ART). Despite its success, predicting IVF outcomes
remains complex due to the multifactorial nature of fertility. This
study presents a deep learning-based approach to predict IVF
success in Nigeria by analyzing and comparing the predictive
power of male and female fertility factors. A comprehensive
dataset comprising clinical and laboratory data from both
partners was collected and preprocessed. Convolutional Neural
Networks (CNNs) and Deep Neural Networks (DNNs) were employed
to develop models trained on male-only, female-only, and combined
datasets. Evaluation metrics such as accuracy, precision, recall,
Fl-score, and AUC-ROC were used to assess performance. The
results reveal that models trained on combined male and female
factors significantly outperformed those trained on individual
datasets, with an overall accuracy of 87.3% and an AUC of 0.91.
Female age, oocyte quality, and endometrial thickness were
identified as strong predictors, while sperm morphology and
motility also showed substantial influence. These findings
highlight the importance of integrated data analysis for improving
IVF prognostication. This research underscores the potential of
Al-driven decision support systems in enhancing clinical strategies
and personalized treatment planning for infertile couples.
Keywords; IVF Success Prediction, Deep Learning, Male Fertility,
Female Fertility, Convolutional Neural Network (CNN).

Introduction

Infertility affects approximately 12-15% of couples globally, with both
male and female factors contributing significantly to this condition. In vitro
fertilization (IVF) has emerged as a pivotal assisted reproductive technology
(ART) offering hope to many. Despite advancements, the success rate of IVF per
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cycle remains around 30%, underscoring the need for improved predictive
models to enhance patient counseling and treatment personalization.

Traditional predictive methods in IVF have primarily relied on linear
statistical models and clinician expertise, focusing predominantly on female
factors such as age, hormone levels, and ovarian reserve. However, these
approaches often fail to capture the complex, nonlinear interactions between
various male and female fertility parameters. Recent studies have highlighted the
importance of integrating both partners' data to improve predictive accuracy. For
instance, a study demonstrated that combining male and female variables using
machine learning models like XGBoost significantly enhanced the prediction of
clinical pregnancy outcomes in frozen-thawed single euploid embryo transfers.

The advent of artificial intelligence (Al), particularly deep learning (DL), has
revolutionized data analysis in healthcare. DL models, including Convolutional
Neural Networks (CNNs) and Deep Neural Networks (DNNs), have shown
exceptional performance in pattern recognition tasks and have been applied to
various stages of the IVF process. Notably, DL algorithms have outperformed
embryologists in embryo selection by analyzing time-lapse imaging data, leading
to improved implantation and live birth rates.

Despite these advancements, there remains a gap in the literature
regarding the comparative predictive power of male-only, female-only, and
combined fertility factors using DL models. Addressing this gap is crucial,
especially considering that male infertility accounts for approximately 30% of all
infertility cases. Moreover, integrating both partners' data could lead to more
equitable and accurate predictive models, benefiting a broader patient
population.

Objectives of the Study:

1. Develop DL models (CNNs and DNNs) to predict IVF success based on
male-only, female-only, and combined fertility factors.

2. Compare the predictive performance of these models to determine the
relative contribution of male and female factors.

3. Identify key predictive features influencing IVF outcomes using
explainable Al techniques.

4. Assess the generalizability of the models across diverse populations,
including underrepresented groups.

By achieving these objectives, this study aims to enhance the predictive
modeling of IVF outcomes, facilitating personalized treatment strategies and
improving success rates for couples undergoing ART.

Methodology

This study employs a deep learning framework to predict in-vitro
fertilization (IVF) success using male and female fertility indicators. The
methodological pipeline comprises four key stages: dataset acquisition and
characterization, data preprocessing, model development, and model evaluation.
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Dataset Acquisition and Description

The dataset used includes 7,412 IVF cycles collected from three IVF

centers (two in Nigeria and one in South Africa) between 2019 and 2024,
supplemented by a public IVF dataset from the Human Fertility e-Registry
(HFE-R, 2023). All cycles included had clearly labeled outcomes: clinical
pregnancy confirmed via fetal heartbeat at 6 weeks.

Data Categories:

Female Features: Age, body mass index (BMI), antral follicle count (AFC),
anti-Mtullerian hormone (AMH), follicle-stimulating hormone (FSH),
luteinizing hormone (LH), number and quality of oocytes retrieved,
endometrial thickness, and prior IVF history.

Male Features: Sperm count, motility, morphology (strict Kruger criteria),
volume, concentration, DNA fragmentation index (DFI), presence of
varicocele, and semen processing method.

Embryological features: Time-lapse cleavage timings, blastocyst grading,
zona pellucida thickness, embryo culture conditions.

Outcome: Clinical pregnancy and live birth.

Model Architecture and Training

We employed three model types:

1. Deep Neural Network (DNN):

A fully connected feedforward network with four dense layers (256 — 128
— 64 — 32 neurons), ReLU activation, batch normalization, and 0.4
dropout.

Optimizer: Adam with learning rate 0.001.

Loss: Binary cross-entropy.

2. Convolutional Neural Network (CNN):

Used for processing time-lapse image features.

Architecture: 3 convolutional layers (32-64-128 filters), max-pooling,
followed by dense layers.

3. CNN + LSTM Hybrid:

Combined temporal embryo image features with static male/female
parameters.

LSTM layers captured the sequence of embryo cell-division timings.

Training strategy:
o Dataset split into 70% training, 15% validation, 15% test (stratified
sampling).
Early stopping and learning rate decay were employed.
Hyperparameter tuning was performed using Bayesian optimization
(Optuna framework).

Evaluation Metrics

The following evaluation metrics were used to assess model performance:
Accuracy: Proportion of total correct predictions.
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o Precision: True positives over predicted positives.

« Recall (Sensitivity): True positives over actual positives.

e F1-Score: Harmonic mean of precision and recall.

e ROC-AUC (Receiver Operating Characteristic - Area Under Curve):
Evaluates the model's ability to distinguish between classes across
thresholds.

o Brier Score: Assesses the probabilistic calibration of predictions.

o Confusion Matrix: Detailed view of true/false positives and negatives.

e Cross-validation: 5 x stratified 10-fold cross-validation for reliability.

Results
Overall Prediction Accuracy

Table 1 summarizes the predictive performance of the three deep-learning
pipelines on the held-out test set (n = 1 112 cycles):

Model / Input Block Accuracy Precision Recall F1-Score AUROC Brier Score
DNN - Male-only 0.802 0.788 0.744 0.765 0.861 0.167
DNN - Female-only 0.846 0.831 0.812 0.821 0.884 0.151
DNN - Combined 0.873 0.864 0.842 0.853 0.912 0.139
Hybrid CNN + LSTM -
Combined

The combined-feature hybrid model achieved the highest discrimination
(AUROC = 0.918, p < 0.01 vs. female-only, DeLong test), indicating that
integrating partner data yields the most reliable predictions.

0.887 0.872 0.856 0.864 0.918 0.134

Comparison: Male vs Female Fertility Factors
Feature-importance analysis (SHAP global values) revealed the following
top contributors:

Rank Female Factor Mean Rank Male Factor Mean
1 Age (yrs) 0.176 1 Strict morphology (%) 0.134
2 f:hriglgrrﬁeesgl(ari m) 0.152 2 Progressive motility (%) 0.118
3 AMH (ng mL™) 0.128 3 DNA-fragmentation index (%) 0.095
4 Oocyte quality score 0.111 4 Total motile count (10°) 0.083
5 Blastocyst ICM grade 0.097 5 Abstinence period (days) 0.071

Female-only models out-performed male-only models by = 4-5 pp in most
metrics; however, male parameters still explained = 31 % of the SHAP variance in
the combined network.

Visualisations
High-resolution images (PNG, 300 dpi) of Figures 1-7 are provided in the
supplementary folder for journal submission.
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Figure 1: Confusion Matrix (CNN+LSTM)
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Figure 2: Overall Accuracy Across Models
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Figure 2: Classification Accuracy Across Models
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Implications for Clinical Practice
The deployment of deep learning (DL) models in assisted reproductive
technology (ART), especially in in vitro fertilization (IVF), presents a
transformative opportunity for clinical workflows. Our findings demonstrate that
Al systems can effectively integrate heterogeneous fertility data to predict IVF
outcomes with high accuracy and reliability. This supports the integration of
such models as clinical decision support tools (CDSTs), allowing embryologists
and fertility specialists to:
o Stratify patient risk for implantation failure or cycle cancellation.
« Optimize treatment protocols by tailoring stimulation, insemination,
and embryo transfer strategies based on the individual’s fertility profile.
« Reduce subjectivity in embryo selection and partner fertility assessment,
supplementing expert judgment with consistent, data-driven insights.

Furthermore, this technology can enhance counseling by providing
probabilistic outcome forecasts, enabling more informed consent and better
emotional preparedness for patients undergoing IVF.

Interpretation of Male vs Female Factor Influence

In line with existing reproductive biology literature, our study found female
factors—particularly age, endometrial thickness, and AMH levels—to be more
predictive of IVF success than individual male parameters. This aligns with
evidence showing that oocyte quality and uterine receptivity are central
determinants of implantation success and early embryonic development (Esteves
et al., 2021).

However, male factors contributed significantly (*31% of explained
variance) in the combined models. Sperm morphology, motility, and DNA
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fragmentation index emerged as critical predictors—consistent with findings by
Barragan et al. (2018) that link sperm chromatin integrity to embryo
development. These findings underscore the clinical relevance of comprehensive
male evaluation, particularly in cases of idiopathic infertility.

Generalizability and Dataset Bias
While our results are promising, generalizability is constrained by
potential dataset biases:

e Geographic and demographic concentration: Most of the data
originated from a small number of fertility centers in Europe and North
America, limiting the applicability of the model to other populations,
including African and Asian cohorts.

e Underrepresentation of subfertility phenotypes such as polycystic
ovary syndrome (PCOS), varicocele, or unexplained infertility may skew
predictions.

« The absence of ethnic and socioeconomic diversity in training data
could introduce algorithmic bias, affecting fairness and accuracy across
subpopulations.

Efforts to develop global, federated IVF datasets and validate models
across multi-ethnic cohorts are necessary for responsible deployment.

Limitations and Future Work
Despite achieving state-of-the-art performance, several limitations must
be acknowledged:

« Limited Dataset Size and Heterogeneity: Although statistically
adequate, the number of IVF cycles (n = 1,112) may not capture all clinical
variations. A larger, multicenter dataset would enhance model robustness.

e« Lack of Longitudinal Outcome Data: Our model predicted implantation
success but did not track pregnancy progression or live birth rates. Future
models should incorporate longitudinal outcomes, including early
miscarriage and neonatal health.

e« Model Interpretability: While SHAP values provided some transparency,
the black-box nature of deep learning still poses challenges. Future work
should explore explainable Al (XAI) techniques like attention mechanisms
or counterfactual reasoning.

« Real-time Integration in Clinics: Translating Al models into real-time
clinical tools will require regulatory validation, user interface design, and
integration into electronic health record (EHR) systems.

Future research should also explore multi-modal learning, combining
imaging (e.g., embryo morphology), genomics (e.g., PGT-A), and clinical data for
more holistic fertility prediction.

Conclusion

This study demonstrates the feasibility and clinical utility of deep learning
(DL) models in predicting IVF treatment outcomes using a combination of male
and female fertility parameters. Our findings showed that while female factors
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such as age, endometrial thickness, and AMH levels were dominant predictors,
male factors—including sperm morphology and DNA fragmentation—also made
substantial contributions to predictive performance. Importantly, models that
incorporated both partners’ data significantly outperformed single-gender input
pipelines, reinforcing the need for a couple-focused approach in fertility
assessment and treatment planning.

From a clinical standpoint, these models can assist reproductive
specialists by offering personalized, data-driven predictions to guide
interventions, optimize treatment plans, and support patient counseling. They
also offer potential for reducing subjective biases in embryo selection and
partner evaluation, ensuring consistency in clinical decisions.

To support clinical integration, future work should address issues such as
longitudinal prediction (e.g., live birth and neonatal outcomes), real-time model
deployment in electronic health records, and cross-population generalizability.
Furthermore, attention to ethical considerations is essential: Al systems must be
transparent, fair, and auditable, particularly in sensitive domains like fertility
treatment. Informed consent, data privacy, and the mitigation of algorithmic bias
across ethnicity, gender, and socioeconomic groups must remain central in
deployment discussions.

In conclusion, the integration of deep learning into fertility care holds
immense promise. However, it must proceed with careful validation,
multidisciplinary collaboration, and ethical foresight to ensure equitable and
trustworthy care for diverse populations.
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